Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
BMC Med Inform Decis Mak ; 23(1): 8, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2196242

RESUMEN

BACKGROUND: The CVD-COVID-UK consortium was formed to understand the relationship between COVID-19 and cardiovascular diseases through analyses of harmonised electronic health records (EHRs) across the four UK nations. Beyond COVID-19, data harmonisation and common approaches enable analysis within and across independent Trusted Research Environments. Here we describe the reproducible harmonisation method developed using large-scale EHRs in Wales to accommodate the fast and efficient implementation of cross-nation analysis in England and Wales as part of the CVD-COVID-UK programme. We characterise current challenges and share lessons learnt. METHODS: Serving the scope and scalability of multiple study protocols, we used linked, anonymised individual-level EHR, demographic and administrative data held within the SAIL Databank for the population of Wales. The harmonisation method was implemented as a four-layer reproducible process, starting from raw data in the first layer. Then each of the layers two to four is framed by, but not limited to, the characterised challenges and lessons learnt. We achieved curated data as part of our second layer, followed by extracting phenotyped data in the third layer. We captured any project-specific requirements in the fourth layer. RESULTS: Using the implemented four-layer harmonisation method, we retrieved approximately 100 health-related variables for the 3.2 million individuals in Wales, which are harmonised with corresponding variables for > 56 million individuals in England. We processed 13 data sources into the first layer of our harmonisation method: five of these are updated daily or weekly, and the rest at various frequencies providing sufficient data flow updates for frequent capturing of up-to-date demographic, administrative and clinical information. CONCLUSIONS: We implemented an efficient, transparent, scalable, and reproducible harmonisation method that enables multi-nation collaborative research. With a current focus on COVID-19 and its relationship with cardiovascular outcomes, the harmonised data has supported a wide range of research activities across the UK.


Asunto(s)
COVID-19 , Registros Electrónicos de Salud , Humanos , COVID-19/epidemiología , Gales/epidemiología , Inglaterra
3.
Circulation ; 146(12): 892-906, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2089002

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a prothrombotic state, but long-term effects of COVID-19 on incidence of vascular diseases are unclear. METHODS: We studied vascular diseases after COVID-19 diagnosis in population-wide anonymized linked English and Welsh electronic health records from January 1 to December 7, 2020. We estimated adjusted hazard ratios comparing the incidence of arterial thromboses and venous thromboembolic events (VTEs) after diagnosis of COVID-19 with the incidence in people without a COVID-19 diagnosis. We conducted subgroup analyses by COVID-19 severity, demographic characteristics, and previous history. RESULTS: Among 48 million adults, 125 985 were hospitalized and 1 319 789 were not hospitalized within 28 days of COVID-19 diagnosis. In England, there were 260 279 first arterial thromboses and 59 421 first VTEs during 41.6 million person-years of follow-up. Adjusted hazard ratios for first arterial thrombosis after COVID-19 diagnosis compared with no COVID-19 diagnosis declined from 21.7 (95% CI, 21.0-22.4) in week 1 after COVID-19 diagnosis to 1.34 (95% CI, 1.21-1.48) during weeks 27 to 49. Adjusted hazard ratios for first VTE after COVID-19 diagnosis declined from 33.2 (95% CI, 31.3-35.2) in week 1 to 1.80 (95% CI, 1.50-2.17) during weeks 27 to 49. Adjusted hazard ratios were higher, for longer after diagnosis, after hospitalized versus nonhospitalized COVID-19, among Black or Asian versus White people, and among people without versus with a previous event. The estimated whole-population increases in risk of arterial thromboses and VTEs 49 weeks after COVID-19 diagnosis were 0.5% and 0.25%, respectively, corresponding to 7200 and 3500 additional events, respectively, after 1.4 million COVID-19 diagnoses. CONCLUSIONS: High relative incidence of vascular events soon after COVID-19 diagnosis declines more rapidly for arterial thromboses than VTEs. However, incidence remains elevated up to 49 weeks after COVID-19 diagnosis. These results support policies to prevent severe COVID-19 by means of COVID-19 vaccines, early review after discharge, risk factor control, and use of secondary preventive agents in high-risk patients.


Asunto(s)
COVID-19 , Trombosis , Enfermedades Vasculares , Tromboembolia Venosa , Trombosis de la Vena , Adulto , COVID-19/complicaciones , COVID-19/epidemiología , Vacunas contra la COVID-19 , Estudios de Cohortes , Humanos , SARS-CoV-2 , Trombosis/complicaciones , Trombosis/epidemiología , Enfermedades Vasculares/complicaciones , Tromboembolia Venosa/etiología , Trombosis de la Vena/epidemiología , Gales/epidemiología
4.
Lancet Digit Health ; 4(7): e542-e557, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1882680

RESUMEN

BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Prueba de COVID-19 , Estudios de Cohortes , Registros Electrónicos de Salud , Inglaterra/epidemiología , Humanos , SARS-CoV-2 , Medicina Estatal
5.
PLoS Med ; 19(2): e1003926, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1699720

RESUMEN

BACKGROUND: Thromboses in unusual locations after the Coronavirus Disease 2019 (COVID-19) vaccine ChAdOx1-S have been reported, although their frequency with vaccines of different types is uncertain at a population level. The aim of this study was to estimate the population-level risks of hospitalised thrombocytopenia and major arterial and venous thromboses after COVID-19 vaccination. METHODS AND FINDINGS: In this whole-population cohort study, we analysed linked electronic health records from adults living in England, from 8 December 2020 to 18 March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous, and thrombocytopenic outcomes 1 to 28 and >28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages <70 and ≥70 years and adjusted for age, age2, sex, ethnicity, and deprivation. We also prespecified adjustment for anticoagulant medication, combined oral contraceptive medication, hormone replacement therapy medication, history of pulmonary embolism or deep vein thrombosis, and history of coronavirus infection in analyses of venous thrombosis; and diabetes, hypertension, smoking, antiplatelet medication, blood pressure lowering medication, lipid lowering medication, anticoagulant medication, history of stroke, and history of myocardial infarction in analyses of arterial thromboses. We selected further covariates with backward selection. Of 46 million adults, 23 million (51%) were women; 39 million (84%) were <70; and 3.7 million (8.1%) Asian or Asian British, 1.6 million (3.5%) Black or Black British, 36 million (79%) White, 0.7 million (1.5%) mixed ethnicity, and 1.5 million (3.2%) were of another ethnicity. Approximately 21 million (46%) adults had their first vaccination between 8 December 2020 and 18 March 2021. The crude incidence rates (per 100,000 person-years) of all venous events were as follows: prevaccination, 140 [95% confidence interval (CI): 138 to 142]; ≤28 days post-ChAdOx1-S, 294 (281 to 307); >28 days post-ChAdOx1-S, 359 (338 to 382), ≤28 days post-BNT162b2-S, 241 (229 to 253); >28 days post-BNT162b2-S 277 (263 to 291). The crude incidence rates (per 100,000 person-years) of all arterial events were as follows: prevaccination, 546 (95% CI: 541 to 555); ≤28 days post-ChAdOx1-S, 1,211 (1,185 to 1,237); >28 days post-ChAdOx1-S, 1678 (1,630 to 1,726), ≤28 days post-BNT162b2-S, 1,242 (1,214 to 1,269); >28 days post-BNT162b2-S, 1,539 (1,507 to 1,572). Adjusted HRs (aHRs) 1 to 28 days after ChAdOx1-S, compared with unvaccinated rates, at ages <70 and ≥70 years, respectively, were 0.97 (95% CI: 0.90 to 1.05) and 0.58 (0.53 to 0.63) for venous thromboses, and 0.90 (0.86 to 0.95) and 0.76 (0.73 to 0.79) for arterial thromboses. Corresponding aHRs for BNT162b2 were 0.81 (0.74 to 0.88) and 0.57 (0.53 to 0.62) for venous thromboses, and 0.94 (0.90 to 0.99) and 0.72 (0.70 to 0.75) for arterial thromboses. aHRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines. Rates of intracranial venous thrombosis (ICVT) and of thrombocytopenia in adults aged <70 years were higher 1 to 28 days after ChAdOx1-S (aHRs 2.27, 95% CI: 1.33 to 3.88 and 1.71, 1.35 to 2.16, respectively), but not after BNT162b2 (0.59, 0.24 to 1.45 and 1.00, 0.75 to 1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1 to 28 days after ChAdOx1-S were 0.9 to 3 per million, varying by age and sex. The main limitations of the study are as follows: (i) it relies on the accuracy of coded healthcare data to identify exposures, covariates, and outcomes; (ii) the use of primary reason for hospital admission to measure outcome, which improves the positive predictive value but may lead to an underestimation of incidence; and (iii) potential unmeasured confounding. CONCLUSIONS: In this study, we observed increases in rates of ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged <70 years that were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults aged <40 years are needed. For people aged ≥70 years, rates of arterial or venous thrombotic events were generally lower after either vaccine compared with unvaccinated, suggesting that either vaccine is suitable in this age group.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19/efectos adversos , Trombocitopenia/etiología , Vacunación , Adulto , Anciano , Estudios de Cohortes , Inglaterra/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , SARS-CoV-2/patogenicidad , Trombocitopenia/epidemiología , Vacunación/efectos adversos
6.
BMJ ; 373: n826, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1172748

RESUMEN

OBJECTIVE: To describe a novel England-wide electronic health record (EHR) resource enabling whole population research on covid-19 and cardiovascular disease while ensuring data security and privacy and maintaining public trust. DESIGN: Data resource comprising linked person level records from national healthcare settings for the English population, accessible within NHS Digital's new trusted research environment. SETTING: EHRs from primary care, hospital episodes, death registry, covid-19 laboratory test results, and community dispensing data, with further enrichment planned from specialist intensive care, cardiovascular, and covid-19 vaccination data. PARTICIPANTS: 54.4 million people alive on 1 January 2020 and registered with an NHS general practitioner in England. MAIN MEASURES OF INTEREST: Confirmed and suspected covid-19 diagnoses, exemplar cardiovascular conditions (incident stroke or transient ischaemic attack and incident myocardial infarction) and all cause mortality between 1 January and 31 October 2020. RESULTS: The linked cohort includes more than 96% of the English population. By combining person level data across national healthcare settings, data on age, sex, and ethnicity are complete for around 95% of the population. Among 53.3 million people with no previous diagnosis of stroke or transient ischaemic attack, 98 721 had a first ever incident stroke or transient ischaemic attack between 1 January and 31 October 2020, of which 30% were recorded only in primary care and 4% only in death registry records. Among 53.2 million people with no previous diagnosis of myocardial infarction, 62 966 had an incident myocardial infarction during follow-up, of which 8% were recorded only in primary care and 12% only in death registry records. A total of 959 470 people had a confirmed or suspected covid-19 diagnosis (714 162 in primary care data, 126 349 in hospital admission records, 776 503 in covid-19 laboratory test data, and 50 504 in death registry records). Although 58% of these were recorded in both primary care and covid-19 laboratory test data, 15% and 18%, respectively, were recorded in only one. CONCLUSIONS: This population-wide resource shows the importance of linking person level data across health settings to maximise completeness of key characteristics and to ascertain cardiovascular events and covid-19 diagnoses. Although this resource was initially established to support research on covid-19 and cardiovascular disease to benefit clinical care and public health and to inform healthcare policy, it can broaden further to enable a wide range of research.


Asunto(s)
COVID-19/epidemiología , Enfermedades Cardiovasculares/epidemiología , Registros Electrónicos de Salud , Registro Médico Coordinado , Adolescente , Adulto , Anciano , COVID-19/diagnóstico , Prueba de COVID-19 , Vacunas contra la COVID-19 , Enfermedades Cardiovasculares/diagnóstico , Niño , Preescolar , Estudios de Cohortes , Inglaterra/epidemiología , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Atención Primaria de Salud/estadística & datos numéricos , Adulto Joven
7.
J Biomed Inform ; 116: 103728, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1131454

RESUMEN

BACKGROUND: Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency and accuracy of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances. However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice. Another limitation is that these models mostly assume independence among labels, ignoring the complex correlations among medical codes which can potentially be exploited to improve the performance. METHODS: To address the issues of model explainability and label correlations, we propose a Hierarchical Label-wise Attention Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences related to each of the labels. Secondly, we propose to enhance the major deep learning models with a label embedding (LE) initialisation approach, which learns a dense, continuous vector representation and then injects the representation into the final layers and the label-wise attention layers in the models. We evaluated the methods using three settings on the MIMIC-III discharge summaries: full codes, top-50 codes, and the UK NHS (National Health Service) COVID-19 (Coronavirus disease 2019) shielding codes. Experiments were conducted to compare the HLAN model and label embedding initialisation to the state-of-the-art neural network based methods, including variants of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). RESULTS: HLAN achieved the best Micro-level AUC and F1 on the top-50 code prediction, 91.9% and 64.1%, respectively; and comparable results on the NHS COVID-19 shielding code prediction to other models: around 97% Micro-level AUC. More importantly, in the analysis of model explanations, by highlighting the most salient words and sentences for each label, HLAN showed more meaningful and comprehensive model interpretation compared to the CNN-based models and its downgraded baselines, HAN and HA-GRU. Label embedding (LE) initialisation significantly boosted the previous state-of-the-art model, CNN with attention mechanisms, on the full code prediction to 52.5% Micro-level F1. The analysis of the layers initialised with label embeddings further explains the effect of this initialisation approach. The source code of the implementation and the results are openly available at https://github.com/acadTags/Explainable-Automated-Medical-Coding. CONCLUSION: We draw the conclusion from the evaluation results and analyses. First, with hierarchical label-wise attention mechanisms, HLAN can provide better or comparable results for automated coding to the state-of-the-art, CNN-based models. Second, HLAN can provide more comprehensive explanations for each label by highlighting key words and sentences in the discharge summaries, compared to the n-grams in the CNN-based models and the downgraded baselines, HAN and HA-GRU. Third, the performance of deep learning based multi-label classification for automated coding can be consistently boosted by initialising label embeddings that captures the correlations among labels. We further discuss the advantages and drawbacks of the overall method regarding its potential to be deployed to a hospital and suggest areas for future studies.


Asunto(s)
COVID-19 , Codificación Clínica/métodos , Redes Neurales de la Computación , SARS-CoV-2 , COVID-19/epidemiología , Codificación Clínica/estadística & datos numéricos , Aprendizaje Profundo , Registros Electrónicos de Salud/estadística & datos numéricos , Humanos , Informática Médica , Pandemias/estadística & datos numéricos , Reino Unido/epidemiología
8.
Heart ; 106(24): 1890-1897, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-835511

RESUMEN

OBJECTIVE: To monitor hospital activity for presentation, diagnosis and treatment of cardiovascular diseases during the COVID-19) pandemic to inform on indirect effects. METHODS: Retrospective serial cross-sectional study in nine UK hospitals using hospital activity data from 28 October 2019 (pre-COVID-19) to 10 May 2020 (pre-easing of lockdown) and for the same weeks during 2018-2019. We analysed aggregate data for selected cardiovascular diseases before and during the epidemic. We produced an online visualisation tool to enable near real-time monitoring of trends. RESULTS: Across nine hospitals, total admissions and emergency department (ED) attendances decreased after lockdown (23 March 2020) by 57.9% (57.1%-58.6%) and 52.9% (52.2%-53.5%), respectively, compared with the previous year. Activity for cardiac, cerebrovascular and other vascular conditions started to decline 1-2 weeks before lockdown and fell by 31%-88% after lockdown, with the greatest reductions observed for coronary artery bypass grafts, carotid endarterectomy, aortic aneurysm repair and peripheral arterial disease procedures. Compared with before the first UK COVID-19 (31 January 2020), activity declined across diseases and specialties between the first case and lockdown (total ED attendances relative reduction (RR) 0.94, 0.93-0.95; total hospital admissions RR 0.96, 0.95-0.97) and after lockdown (attendances RR 0.63, 0.62-0.64; admissions RR 0.59, 0.57-0.60). There was limited recovery towards usual levels of some activities from mid-April 2020. CONCLUSIONS: Substantial reductions in total and cardiovascular activities are likely to contribute to a major burden of indirect effects of the pandemic, suggesting they should be monitored and mitigated urgently.


Asunto(s)
COVID-19 , Servicio de Cardiología en Hospital/tendencias , Enfermedades Cardiovasculares/terapia , Prestación Integrada de Atención de Salud/tendencias , Necesidades y Demandas de Servicios de Salud/tendencias , Evaluación de Necesidades/tendencias , Enfermedades Cardiovasculares/diagnóstico , Estudios Transversales , Servicio de Urgencia en Hospital/tendencias , Humanos , Admisión del Paciente/tendencias , Estudios Retrospectivos , Factores de Tiempo , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA